精品人妻少妇嫩草AV无码专区_69堂亚洲国产日韩精品无码专区成人妻中文字幕一区二区三区在线久久久久_久久久久国产精品

您好,歡迎來(lái)到維庫(kù)儀器儀表網(wǎng) 網(wǎng)站登錄 | 免費(fèi)注冊(cè) | 忘記密碼

咨詢電話SERVICE LINE

010-57105031

15300399766

商鋪首頁(yè) 公司介紹 公司動(dòng)態(tài) 產(chǎn)品中心 技術(shù)資料 在線留言 聯(lián)系我們
您所在的位置:維庫(kù)儀器儀表網(wǎng) > 其他專用儀器儀表 > 北京博倫經(jīng)緯科技發(fā)展有限公司 > 產(chǎn)品中心 > 北京博倫經(jīng)緯 > HPV莖流量傳感器Sap Flow Sensor澳大利亞
HPV莖流量傳感器Sap Flow Sensor澳大利亞
HPV莖流量傳感器Sap Flow Sensor澳大利亞
  • HPV莖流量傳感器Sap Flow Sensor澳大利亞
  • HPV莖流量傳感器Sap Flow Sensor澳大利亞
  • HPV莖流量傳感器Sap Flow Sensor澳大利亞
  • HPV莖流量傳感器Sap Flow Sensor澳大利亞
  • HPV莖流量傳感器Sap Flow Sensor澳大利亞
掃一掃

掃一掃
進(jìn)入手機(jī)店鋪

HPV莖流量傳感器Sap Flow Sensor澳大利亞

產(chǎn)品價(jià)格:
10.00
產(chǎn)品型號(hào):
HPV
產(chǎn)品品牌:
澳大利亞Edaphic
供應(yīng)商等級(jí):
金牌會(huì)員13年
經(jīng)營(yíng)模式:
工廠
企業(yè)名稱:
北京博倫經(jīng)緯科技發(fā)展有限公司
所屬地區(qū):
北京市
發(fā)布時(shí)間:
2021/3/26 16:47:08

010-57105031      15300399766

陳小姐女士(聯(lián)系我時(shí),請(qǐng)說(shuō)明是在維庫(kù)儀器儀表網(wǎng)看到的,謝謝)

買(mǎi)家還在看

企業(yè)檔案

北京博倫經(jīng)緯科技發(fā)展有限公司

會(huì)員13年營(yíng)業(yè)執(zhí)照已上傳

經(jīng)營(yíng)模式:工廠

所在地:北京市

主營(yíng)產(chǎn)品:氣象站,光伏光熱設(shè)備,環(huán)境監(jiān)測(cè)設(shè)備

產(chǎn)品搜索

手機(jī)訪問(wèn)

掃一掃
進(jìn)入手機(jī)店鋪

  • 測(cè)量范圍:-200~+1000cm/hr
  • 分辨率:0.001cm/hr
  • 工作環(huán)境:-30~+70℃

HPV 莖流量傳感器/Sap Flow Sensor       

c3fee49b128809311ebb1370eb45835.jpg

HPV莖流量傳感器是一款校準(zhǔn)型、低成本的熱脈沖液流傳感器,輸出校準(zhǔn)液流量、熱速、莖水含量、莖溫等數(shù)據(jù),功耗低,內(nèi)置加熱控制,同時(shí)改善了傳統(tǒng)的加熱方式,其原理采用熱脈沖速率法,測(cè)量范圍:-200~+1000cm/hr(熱流速度)或-100~+2000cm3/cm2/hr (莖流通量密度),可廣泛用于于莖流量監(jiān)測(cè)、植物莖流蒸發(fā)計(jì)算、植物莖流蒸騰量、植物灌溉等
植物莖流是樹(shù)木內(nèi)部的“水”運(yùn)動(dòng),而蒸騰是從葉片通過(guò)光合作用蒸發(fā)流出的水分。樹(shù)液流量和蒸騰量之間有很強(qiáng)的關(guān)聯(lián)性,通常理解是同一回事。但是,嚴(yán)格地說(shuō),它們是不同的,這體現(xiàn)在它們是如何被測(cè)量的。
         SAP流量以L/hr(或每天、每周等)為單位進(jìn)行測(cè)量。蒸騰量以每小時(shí)、每天、每星期等毫米(mm)為單位測(cè)量。
 蒸散量=蒸騰量+蒸發(fā)量 
蒸騰量以毫米為測(cè)量單位,可與降雨量以毫米計(jì)作比較。隨著時(shí)間的推移,降雨量(水輸入)應(yīng)與蒸騰量(輸出)相匹配。如果蒸騰作用更高,通常是樹(shù)木作物的蒸騰作用,那么這種差異必須通過(guò)灌溉來(lái)彌補(bǔ)。
    蒸發(fā)量(evaporation),蒸發(fā)量是指在一定時(shí)段內(nèi),由土壤或水中的水分經(jīng)蒸發(fā)而散布到空中的量。

1mm(降雨量)=1㎡地面1kg水
1mm(蒸騰量)=1㎡葉面積的1升樹(shù)液流量(水)
 
例如:在果園和葡萄園等有管理的樹(shù)木作物系統(tǒng)中,蒸發(fā)量與蒸騰量相比非常小。因此,為了簡(jiǎn)化測(cè)量,通常忽略蒸發(fā)量,將蒸騰量取為平均蒸散量(ETo)。

莖流量傳感器廣泛應(yīng)用
    計(jì)算總流量
    低液流和零液流速率
    反向液流速率
    夜間水分損失
    根莖液流速度
    貧瘠生態(tài)系統(tǒng)及干旱
    徑向液體流速
    葡萄藤的液流
 
 莖流量傳感器技術(shù)指標(biāo)
測(cè)量范圍:-200~+1000cm/hr(熱流速度)
分辨率:0.001cm/hr
準(zhǔn)確度:±0.1cm/hr
探針尺寸:φ1.3mm*L30mm
溫度位置:外10mm,內(nèi)20mm
針距:6mm
探針材質(zhì):316不銹鋼
溫度范圍:-30~+70℃
響應(yīng)時(shí)間:200ms
加熱電阻:39Ω,400J/m
電源:12V DC
電流:空閑5mA, 測(cè)量<270mA
線纜:5m,*大60m



莖流量傳感器參考文獻(xiàn):
1. Kim, H.K.; Park, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants.
J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]

2. Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]

3. Vandegehuchte, M.W.; Steppe, K. Sap-flux density measurement methods: Working principles and
applicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]

4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.
[CrossRef] [PubMed]

5. Cohen, Y.; Fuchs, M.; Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397. [CrossRef]

6. Green, S.R.; Clothier, B.; Jardine, B. Theory and practical application of heat pulse to measure sap flow.
Agron. J. 2003, 95, 1371–1379. [CrossRef]

7. Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]

8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]

9. Bleby, T.M.; McElrone, A.J.; Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.

10. Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]

11. Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]

12. Green, S.R.; Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]

13. Green, S.; Clothier, B.; Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]

14. Ferreira, M.I.; Green, S.; Concei??o, N.; Fernández, J. Assessing hydraulic redistribution with the
compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.
[CrossRef]

15. Romero, R.; Muriel, J.L.; Garcia, I.; Green, S.R.; Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]

16. Testi, L.; Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]

17. Vandegehuchte, M.W.; Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]

18. Kluitenberg, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.
Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]

19. Vandegehuchte, M.W.; Steppe, K. Improving sap-flux density measurements by correctly determining
thermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.
[CrossRef]

20. Looker, N.; Martin, J.; Jencso, K.; Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]

21. Edwards, W.R.N.; Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]

22. Becker, P.; Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]

23. Hogg, E.H.; Black, T.A.; den Hartog, G.; Neumann, H.H.; Zimmermann, R.; Hurdle, P.A.; Blanken, P.D.;
Nesic, Z.; Yang, P.C.; Staebler, R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
boreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]

24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]

25. Kollmann, F.F.P.; Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg, Germany, 1968.

26. Swanson, R.H.; Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]

27. Barrett, D.J.; Hatton, T.J.; Ash, J.E.; Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]

28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane, Australia, 2016.

29. Steppe, K.; de Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal
dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]

30. López-Bernal, A.; Testi, L.; Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]

31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]

32. Cohen, Y.; Fuchs, M.; Falkenflug, V.; Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]

33. Cohen, Y.; Takeuchi, S.; Nozaka, J.; Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]

34. Lassoie, J.P.; Scott, D.R.M.; Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.

35. Wang, S.; Fan, J.; Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]

36. Bleby, T.M.; Burgess, S.S.O.; Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]

37. Madurapperuma, W.S.; Bleby, T.M.; Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]

38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
scheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]

39. Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern United
States. Irrig. Sci. 2009, 27, 253–262. [CrossRef]

40. Eliades, M.; Bruggeman, A.; Djuma, H.; Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutia
forest. Water 2018, 10, 1039. [CrossRef]

41. Zhao, C.Y.; Si, J.H.; Qi, F.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [CrossRef]

42. Deng, Z.; Guan, H.; Hutson, J.; Forster, M.A.; Wang, Y.; Simmons, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [CrossRef]

43. Doronila, A.I.; Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015, 17, 101–108. [CrossRef]

44. López-Bernal, á.; Alcántara, E.; Villalobos, F.J. Thermal properties of sapwood fruit trees as affected by
anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
2014, 28, 1623–1634. [CrossRef]

聯(lián)系方式

北京博倫經(jīng)緯科技發(fā)展有限公司

聯(lián)系人:
陳小姐女士
手機(jī):
15300399766/18501340175
傳真:
010-82986829
所在地:
北京市
類(lèi)型:
工廠
地址:
北京市昌平區(qū)北清路1號(hào)珠江摩爾國(guó)際大廈3號(hào)樓1單元713

服務(wù)熱線

010-57105031

QQ:2072775339 
提示:您在維庫(kù)儀器儀表網(wǎng)上采購(gòu)商品屬于商業(yè)貿(mào)易行為。以上所展示的信息由賣(mài)家自行提供,內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由發(fā)布賣(mài)家負(fù)責(zé),請(qǐng)意識(shí)到互聯(lián)網(wǎng)交易中的風(fēng)險(xiǎn)是客觀存在的。 請(qǐng)廣大采購(gòu)商認(rèn)準(zhǔn)帶有維庫(kù)儀器儀表網(wǎng)認(rèn)證的(金牌會(huì)員、VIP會(huì)員、至尊VIP會(huì)員、百維通)供應(yīng)商進(jìn)行采購(gòu)!
個(gè)人中心
商家客服

商家客服
專業(yè)的人工客服服務(wù)

QQ:2072775339 

商家電話

人工服務(wù)電話
010-57105031

頂部
立即詢價(jià)
手機(jī)訪問(wèn)

掃一掃
進(jìn)入手機(jī)店鋪